Note on Lieb-Robinson Bound(1)

This note mainly focus on the basis of Lieb-Robinson Bound, considering the application towards correlation function, topological order, and nonrelativistic Goldstone theorem. The main references are:

[1] An Online Chinese Note

[2] M. B. Hastings, Locality in Quantum Systems.

Part. 1 Lieb-Robinson Bound

Consider H=ZHZH=\sum_ZH_Z, where ZZ is denoted as a set of lattice site and HZ\| H_Z\| decays exponentially.


Theorem 1

Suppose for site i, we have:

XiHXXexp[μdiam(X)]s<,   μ,s>0\sum_{X\ni i}\|H_X\||X|\exp[\mu {\rm diam}(X)]\leq s< \infty, ~~~\mu,s>0

Let A,BA,B to be bosonic operators supported on sets X,YX,Y(dist(X,Y)>0{\rm dist}(X,Y)>0), then:

[A(t),B]2ABiXexp[μdist(i,Y)](e2st1)2ABXexp[μdist(X,Y)](e2st1)\begin{aligned} \|[A(t),B]\|&\leq 2\|A\|\|B\|\sum_{i\in X}\exp[-\mu{\rm dist}(i,Y)](e^{2s|t|}-1)\\ &\leq 2\|A\|\|B\||X|\exp[-\mu{\rm dist}(X,Y)](e^{2s|t|}-1)\\ \end{aligned}


Proof:

Let tn=tNn=nϵt_n=\frac{t}{N}n=n\epsilon, with N is large, and IX=Z:ZXHZI_X = \sum_{Z:Z \cap X \neq\varnothing}H_Z.

[A(t),B][A(0),B]=n=0N1ϵ[A(t<!swig0>),B][A(tn),B]ϵ\|[A(t),B]\|-\|[A(0),B]\|= \sum_{n=0}^{N-1}\epsilon\frac{\|[A(t_NaN),B]\|-\|[A(t_n),B]\|}{\epsilon}

[A(t<!swig1>),B][A(tn),B]=[A(ϵ),B(tn)][A,B(tn)][A+iϵ[H,A],B(tn)][A,B(tn)]+O(ϵ2)=[A+iϵ[IX,A],B(tn)][A,B(tn)]+O(ϵ2)\begin{aligned} \|[A(t_NaN),B]\|-\|[A(t_n),B]\| &= \|[A(\epsilon),B(-t_n)]\|-\|[A,B(-t_n)]\|\\ &\leq\|[A+i\epsilon[H,A],B(-t_n)]\|-\|[A,B(-t_n)]\|+\mathcal{O}(\epsilon^2)\\ &=\|[A+i\epsilon[I_X,A],B(-t_n)]\|-\|[A,B(-t_n)]\|+\mathcal{O}(\epsilon^2)\\ \end{aligned}

[A+iϵ[IX,A],B(tn)]=[eiϵIXAeiϵIX,B(tn)]+O(ϵ2)=[A,eiϵIXB(tn)eiϵIX]+O(ϵ2)[A,B(tn)]+ϵ[A,[IX,B(tn)]]+O(ϵ2)\begin{aligned} \|[A+i\epsilon[I_X,A],B(-t_n)]\|&=\|[e^{i\epsilon I_X}Ae^{-i\epsilon I_X},B(-t_n)]\|+\mathcal{O}(\epsilon^2)\\ &=\|[A,e^{-i\epsilon I_X}B(-t_n)e^{i\epsilon I_X}]\|+\mathcal{O}(\epsilon^2)\\ &\leq\|[A,B(-t_n)]\|+\epsilon\|[A,[I_X,B(-t_n)]]\|+\mathcal{O}(\epsilon^2)\\ \end{aligned}

Then we obtain:

[A(t),B][A(0),B]=2An=0N1ϵZ:ZX[HZ,B(tn)]+O(ϵ)=2An=0N1Z:ZXϵ[HZ(tn),B]+O(ϵ)=2AZ:ZX0tdx[HZ(x),B]\begin{aligned} \|[A(t),B]\|-\|[A(0),B]\|&=2\|A\| \sum_{n=0}^{N-1}\epsilon\sum_{Z:Z \cap X \neq\varnothing}\|[H_Z,B(-t_n)]\|+\mathcal{O}(\epsilon)\\ &=2\|A\| \sum_{n=0}^{N-1}\sum_{Z:Z \cap X \neq\varnothing}\epsilon\|[H_Z(t_n),B]\|+\mathcal{O}(\epsilon)\\ &=2\|A\|\sum_{Z:Z \cap X \neq\varnothing}\int_0^{|t|}dx\|[H_Z(x),B]\|\\ \end{aligned}

Approximation: using the upper limit to control the bound.

Define CB(X,t):=supAAX[A(t),B]AC_B(X,t):=\sup_{A\in\mathcal{A}_X}\frac{\|[A(t),B]\|}{\|A\|}, then we have CB(X,0)=0C_B(X,0)=0 fordist(X,Y)>0{\rm dist}(X,Y)>0 and :CB(Z,0)2BC_B(Z,0)\leq2\|B\|

CB(X,t)2HZZ:ZX0tdxCB(Z,x)2HZ1Z1:Z1X0tdxCB(Z,0)+22HZ1HZ2Z1:Z1XZ2:Z2Z10t0xdxdyCB(Z,y)2(2t)BZ1:Z1X,Z1YHZ1+2(2t)22!BZ1:Z1XZ2:Z2Z1,Z2YHZ1HZ2+\begin{aligned} C_B(X,t)&\leq2\|H_Z\|\sum_{Z:Z \cap X \neq\varnothing}\int_0^{|t|}dxC_B(Z,x)\\ &\leq2\|H_{Z_1}\|\sum_{Z_1:Z_1 \cap X \neq\varnothing}\int_0^{|t|}dxC_B(Z,0)\\ &+2^2\|H_{Z_1}\|\|H_{Z_2}\|\sum_{Z_1:Z_1 \cap X \neq\varnothing}\sum_{Z_2:Z_2 \cap Z_1 \neq\varnothing}\int_0^{|t|}\int_0^{|x|}dxdyC_B(Z,y)\\ &\leq2(2|t|)\|B\|\sum_{Z_1:Z_1 \cap X \neq\varnothing,Z_1\cap Y\neq\varnothing}\|H_{Z_1}\|+2\frac{(2|t|)^2}{2!}\|B\|\sum_{Z_1:Z_1 \cap X \neq\varnothing}\sum_{Z_2:Z_2 \cap Z_1 \neq\varnothing,Z_2\cap Y\neq\varnothing}\|H_{Z_1}\|\|H_{Z_2}\|+\cdots \end{aligned}

For the first term, we have:

Z1:Z1X,Z1YHZ1iXZ1i,Z1YHZ1\sum_{Z_1:Z_1 \cap X \neq\varnothing,Z_1\cap Y\neq\varnothing}\|H_{Z_1}\|\leq\sum_{i\in X}\sum_{Z_1\ni i,Z_1\cap Y\neq\varnothing}\|H_{Z_1}\|

In case that Z1YZ_1\cap Y\neq\varnothing, then dist(i,Y)diam(Z){\rm dist}(i,Y)\leq {\rm diam}(Z), which means:

Z1:Z1X,Z1YHZ1iXexp(μdist(i,Y))\sum_{Z_1:Z_1 \cap X \neq\varnothing,Z_1\cap Y\neq\varnothing}\|H_{Z_1}\|\leq \sum_{i\in X}\exp(-\mu{\rm dist}(i,Y))

For the second term, we have:

Z1:Z1XZ2:Z2Z1,Z2YHZ1HZ2=iXZ1ijZ1Z2j,Z2YHZ1HZ2iXZ1ijZ1Z2j,Z2YHZ1HZ2exp(dist(i,Y))exp(dist(i,j))exp(dist(j,Y))=iXZ1ijZ1exp(μdist(i,Y))exp(μdist(i,j))Z2j,Z2YHZ1HZ2exp(μdist(j,Y))iXZ1ijZ1exp(μdist(i,Y))exp(μdist(i,j))Z2j,Z2YHZ1HZ2exp(μdiam(Z2))iXZ1ijZ1exp(μdist(i,Y))exp(μdist(i,j))HZ1siXZ1iexp(μdist(i,Y))exp(μdiam(Z1))HZ1sZ1iXexp(μdist(i,Y))s2\begin{aligned} &\sum_{Z_1:Z_1 \cap X \neq\varnothing}\sum_{Z_2:Z_2 \cap Z_1 \neq\varnothing,Z_2\cap Y\neq\varnothing}\|H_{Z_1}\|\|H_{Z_2}\|\\ &=\sum_{i\in X}\sum_{Z_1 \ni i}\sum_{j\in Z_1}\sum_{Z_2\ni j,Z_2\cap Y\neq \varnothing}\|H_{Z_1}\|\|H_{Z_2}\|\\ &\leq\sum_{i\in X}\sum_{Z_1 \ni i}\sum_{j\in Z_1}\sum_{Z_2\ni j,Z_2\cap Y\neq \varnothing}\|H_{Z_1}\|\|H_{Z_2}\|\exp(-{\rm dist}(i,Y))\exp({\rm dist}(i,j))\exp({\rm dist}(j,Y))\\ &= \sum_{i\in X}\sum_{Z_1 \ni i}\sum_{j\in Z_1}\exp(-{\mu\rm dist}(i,Y))\exp(\mu{\rm dist}(i,j))\sum_{Z_2\ni j,Z_2\cap Y\neq \varnothing}\|H_{Z_1}\|\|H_{Z_2}\|\exp(\mu{\rm dist}(j,Y))\\ &\leq \sum_{i\in X}\sum_{Z_1 \ni i}\sum_{j\in Z_1}\exp(-\mu{\rm dist}(i,Y))\exp(\mu{\rm dist}(i,j))\sum_{Z_2\ni j,Z_2\cap Y\neq \varnothing}\|H_{Z_1}\|\|H_{Z_2}\|\exp(\mu{\rm diam}(Z_2))\\ &\leq \sum_{i\in X}\sum_{Z_1 \ni i}\sum_{j\in Z_1}\exp(-\mu{\rm dist}(i,Y))\exp(\mu{\rm dist}(i,j))\|H_{Z_1}\|s\\ &\leq \sum_{i\in X}\sum_{Z_1 \ni i}\exp(-\mu{\rm dist}(i,Y))\exp(\mu{\rm diam}(Z_1))\|H_{Z_1}\|s|Z_1|\\ &\leq \sum_{i\in X}\exp(-\mu{\rm dist}(i,Y))s^2\\ \end{aligned}

Higher order terms follows the same procedure. Then,

CB(X,t)2BiXexp[μdist(X,Y)](e2st1)C_B(X,t)\leq2\|B\|\sum_{i \in X}\exp[-\mu{\rm dist}(X,Y)](e^{2s|t|}-1)

Q.E.D.


We now have Lieb-Robinson bound with the form:

[A(t),B]2ABXexp[μdist(X,Y)](e2st1)\|[A(t),B]\|\leq 2\|A\|\|B\||X|\exp[-\mu{\rm dist}(X,Y)](e^{2s|t|}-1)\\

We can then deduce another form setting a constant vLRv_{LR} such that for tdist(X,Y)/vLRt\leq {\rm dist}(X,Y)/v_{LR},

[A(t),B]vLRtlABXg(l),l=dist(X,Y)\|[A(t),B]\|\leq \frac{v_{LR}t}{l}\|A\|\|B\||X|g(l),l={\rm dist}(X,Y)

Apparently, vLR=4s/μv_{LR}=4s/\mu is a plausible choice.

  • Copyright: Copyright is owned by the author. For commercial reprints, please contact the author for authorization. For non-commercial reprints, please indicate the source.
  • Copyrights © 2021-2025 Richard Liu
  • Visitors: | Views:

请我喝杯咖啡吧~

支付宝
微信