Notes on strong correlated system(1)

This is a note for the reading of the 2nd yellow book by Nagaosa.

Bosonization

The example we will discuss is one of the so-called Tomonaga-Luttinger liquids, XXZ model.

For XXZ model, the Halmiltonian is:

H=Ji(SixSi+1x+SiySi+1y)+JziSizSi+1z=J2i(Si+Si+1+SiSi+1+)+JziSizSi+1zH = J_\perp\sum_i(S^x_iS^x_{i+1}+S^y_iS^y_{i+1})+J_z\sum_iS_i^zS_{i+1}^z=\frac{J_\perp}{2}\sum_i(S^+_iS^-_{i+1}+S^-_iS^+_{i+1})+J_z\sum_iS_i^zS_{i+1}^z

For the discrete case, we have the Hamiltonian (Using the technique of Jordan-Wigner Transformation):

H=J2i=1N(fifi+1+fi+1fi)+Jzi=1N(fifi12)(fi+1fi+112)=H1+H2H = -\frac{J_\perp}{2}\sum_{i=1}^{N}(f_i^\dagger f_{i+1}+f_{i+1}^\dagger f_i)+J_z\sum_{i=1}^{N}(f_i^\dagger f_i-\frac{1}{2})(f_{i+1}^\dagger f_{i+1}-\frac{1}{2}) = H_1+H_2

If we introduce the Fourier transformation:

fn=1Nkfkeikn,fn=1Nkfkeiknf_n = \frac{1}{\sqrt{N} }\sum_kf_ke^{ikn},f_n^\dagger = \frac{1}{\sqrt{N} }\sum_kf_k^\dagger e^{-ikn}

Then we have:

H1=k(Jcosk)fkfkH_1 = \sum_k (-J_\perp \cos k)f_k^\dagger f_k

We treat JzJ_z as perturbation, and in case that Stotz=0S_{tot}^z = 0, we have the the ground state of H1H_1 is just the Fermi sea state (just from the fact that Siz=fifi12S_i^z = f_i^\dagger f_i-\frac{1}{2}). We can see immediately that H2H_2 is the particle-hole excitation as we look back at the original Hamiltonian that H2H_2 will not change the z-spin of each site.

From the perspective of perturbation, the low-energy particle-hole exitation near the Fermi surface will be dominant.

1st step: Linearization

In case that only the vicinity of the Fermi surface that counts, we replace the dispersion relation εk=Jcosk\varepsilon_k = -J_\perp \cos k by two linearized dispersion relationship, and also only consider the creation/annihilation of kFk_F then we have:

fn=1Nkfkeikn=R(xn)eikFxn+L(xn)eikFxnf_n =\frac{1}{\sqrt{N} }\sum_kf_ke^{ikn}= R(x_n)e^{ik_Fx_n}+L(x_n)e^{-ik_Fx_n}

And because R(xn),L(xn)R(x_n),L(x_n) contain only the long wavelength components, then we consider it to be continuous. We write:

ψ(x)=(R(x)L(x))\psi(x) = \begin{pmatrix} R(x)\\ L(x)\\ \end{pmatrix}

Then we have:

H1=Jdxψˉiγ1xψH_1 = -J_\perp \int dx \bar{\psi} i \gamma_1\partial_x\psi

Notes on proof:

ψˉiγ1xψ=i(RxRLxL)flfl+1+fl+1fl=(RleikFl+LleikFl)(Rl+1eikF(l+1)+Ll+1eikF(l+1))+h.c.=RleikFRl+1+RleikF(2l+1)Ll+1+LleikF(2l+1)Rl+1+LleikFLl+1+h.c.=iRlRl+1i(1)lRlLl+1+i(1)lLlRl+1iLlLl+1+h.c.iRlRl+1iLlLl+1+h.c.\bar{\psi} i \gamma_1\partial_x\psi = i(R^\dagger\partial_xR-L^\dagger\partial_xL)\\ \begin{aligned} f_l^\dagger f_{l+1}+f_{l+1}^\dagger f_l &= (R^\dagger_le^{-ik_Fl}+L^\dagger_le^{ik_Fl})(R_{l+1}e^{ik_F(l+1)}+L_{l+1}e^{-ik_F(l+1)})+h.c.\\ & = R^\dagger_le^{ik_F}R_{l+1}+R^\dagger_le^{-ik_F(2l+1)}L_{l+1}+L^\dagger_le^{ik_F(2l+1)}R_{l+1}+L^\dagger_le^{-ik_F}L_{l+1}+h.c.\\ &= iR_l^\dagger R_{l+1}-i(-1)^lR_l^\dagger L_{l+1}+i(-1)^lL^\dagger_lR_{l+1}-iL^\dagger_l L_{l+1}+h.c.\\ &\approx iR_l^\dagger R_{l+1}-iL^\dagger_l L_{l+1}+h.c.\\ \end{aligned}

Performing a Fourier transformation, we have:

R(x)=12πdkeikxR(k),xR=12πdkeikxikR(k)H1=kJk(R(k)R(k)L(k)L(k))R(x) = \frac{1}{2\pi}\int dk e^{ikx}R(k), \partial_xR = \frac{1}{2\pi}\int dk e^{ikx}ikR(k)\\ H_1 = \sum_k J_\perp k(R^\dagger(k)R(k)-L^\dagger(k)L(k))

To compute the JzJ_z term, we need to figure out:

fnfn=RnRn+LnLn+e2ikFn(RnLn+LnRn)f^\dagger_nf_n = R_n^\dagger R_n+L^\dagger_nL_n+e^{2ik_Fn}(R_n^\dagger L_n+L^\dagger_nR_n)

  • Copyright: Copyright is owned by the author. For commercial reprints, please contact the author for authorization. For non-commercial reprints, please indicate the source.
  • Copyrights © 2021-2025 Richard Liu
  • Visitors: | Views:

请我喝杯咖啡吧~

支付宝
微信